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-2 Strong contidence intervals: A compromise between
the Gaussian and the slash

Stephan Morgenthaler
Technical Report No. 253, Series 2
Department of Statistics
Princeton University
Princeton, New Jersey 08544

AT

i’
L

o
.’
)

s
N ABSTRACT

N
DY In this report we detine strong contidence interval

) procedures and discuss their properties. Strong conti-
*; dence means that the reported contidence 1level |is
g achieved even conditioned on contigurations. Furthermore
*ﬁ this is true tor both the Gaussian and the slash sampling
S situations. We will show how such a procedure can be

2 obtained and compare its pertormance to some popular

non-parametric contidence intervals.

1

= .

S
AN 1. INTRODUCTION

. Robust contidence interval estimation is not a heavy researched
by C .
d area ot statistics. Around 1945 the tirst papers about non-
L]
(' !
N parametric methods appeared. These procedures provide us with
o contidence intervals which reach the reported contidence coefticient
¥y under any -- or any symmetric -- sampling situation. 1In this sense
i
hsy - they are robust (robustness of validity).

! In this report we plan to emphasize (some more) the idea ot

»)
b7 having a highly resistant contidence coetticient. In Section 2 we
o Prepared In connection with research at Princeton University, spon-
5! sored by the Army Research Ottice (Durham). The computing tacilities
Ay, were provided by the Department ot Energy, Contract DE-ACO2-
~q 81ER10841.
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will introduce the tormulas and methods tor a single, known sampling
situation. Section 3, then deals with the case ot unknown shape. We
are concerned about the dangers ot heavy-tailed situations which
leads to the choice ot the slash-shape as our counterpart to the

Gaussian.

2. An equivariant contidence interval procedure tor a location

Earamet.et .

A lot ot work has been done in th2 area of robust interence
about location and scale parameters. Theoretical methods like
asymptotic minimax and intluence curves handle the case ot known
scale in a convincing way and the theory is widely accepted. Hand in
hand with this development went the recognition ot robustness as a
research topic in applied statistics. We theretfore hardly have to
argue in tavor ot robust procedures.

The need tor more work connected with specitic sample sizes is less
widely acknowledged. The Princeton robustness study (Andrews et
al(1972)) is an early example tor this kind ot research. There
several location estimators are tested in 2 variety ot situations and

sample sizes.

In the tollowing sections we will discuss an approach which
combines the two ideas of robustness and small sample study. The

topic is contidence interval estimation, where our knowledge is quite

limited.

Let us start our discussion with the classic location and scale

problem, where

November 15, 1983
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\i: is a vector ot iid random variables drawn from the distribution
} x = o
F( 5 ) B € R, 0 € R,
e
.§§ which is tixed and known except tor the location p and the scale o.
e XA )
N Let us assume that the vector ? is ordered, i.e.
.::% Y £ Yy, 8 e S Y, -
1;ﬂ From the beginning we restrict attention to location and scale
g{l equivariant procedures. By this we mean the tunctional property ot
)
;:i the procedure T
ba
o5
-~ T(sy + ) = sT(Y) + «
;:3
,,ﬁ whenever s€R,_ and r€R, i.e. under certain canonical transformations
.‘q..':
.wq ot the sample ?, the value of T transtorms canonically too (f stands
R
s tor the vector in R" whose components are all 1). Such tunctions
ot
:; are best studied in reterence to location and scale contigurations,
e i.e. the equivalence classes ot the equivalence relation detined
- on R"
15
N
?\ ?’equivalent to ? itt there is a positive, real s and a real
X .
o t such that ? = s(tf + ?).
]
g
ﬁ% Any location and scale equivariant mapping
R .
. T : R --> R
;’:
‘;f will be completely specitied in any contiguration by tixing its value
.-i
7
A November 15, 1983
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T(?) € R tor a class-representing element 3} since by the detining

relation tor equivariance
T™Y) = T(s(t? + @)) = sT(tP + @) = s(t + T(D)).

When doing numerical integrations (with respect to conditional
distributions given the contiguration) it is advisable to choose the

class-representing element such that

and (since we have ordered trom the beginning) €, £ ¢, L. L E . A
good choice seems to be index a around % and index b around %F. This
means that w2 choose as our element representing the contiguration,
that sample which satisties the two above restrictions. Of course
this element will be uniqu2ly detined.

Another way ot thinking about the class-representing elements is to

say that they are base points tor parametrizing contigurations, which

are two-dimensional classes ot samples.

Any sample ? = (yl,yz,...,yn) determines uniquely its

contiguration (we use the word contiguration also to denote the

class-representing elements) by I

323 Yy
*": ck'? d ty H k.lpo.n’n

Yp = Y, Yo * Y,

where s = and t = . And so we can parametrize
Y 2 y T ¥ - P
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’:; Remember that (cl,cz....,cn) = 3’:5 (n-2)- dimensional since two

.,

o values are pre-tixed.

;ﬁ It we have a sample ?, we know the contiquration ?'and it can
' * .

Es be argued that this contains all ot the "allowed" intormation -- we
<. should not be intluenced by the actual values ot sy and ty. The

N *point pattern” ot the sample by itselt should tix our ideas about
ii location and scale. J.W. Tukey's picture tor this is a code clerk who
o pre-processes our sample ? and only gives to us the contiguration 2
P

2% onto which we have to base our interence ("inference on the

;ﬁ ngcale'). Atter handing him our estimated values back, the code

3 clerk can use his knowledge ot sy and ty to transtorm the answer back
tv to the ?-scale, he simply has to add ty back in and multiply by sy.
Sﬁ The contigurations partition th2 sample space R" into 2-

) dimensional subsets -- parametrized by tER and séR_ -- which are the
N

g% largest sets where a general location and scale equivariant mapping
’l

oy behaves pertectly simply and can be detined by a single real number.
QP But contigurations are also connected with the probability

Ko

&ﬂ structure on the sample space induced by iid sampling trom

3 4yl

i r(igﬁ) MER , cel+. The idea works because of the equivariance
S properties ot the probability structure, i.e. the canonical changes
_-} which take place inside contigurations it the parameter values are
}f changed.

4 N

33 Let kp(t,slu.c,c) denote the conditional density given the

ot

gﬁ contiqguration 3\ We have to tind the Jacobian ot the transtormation

3! November 15, 1983
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yi = s(t+ci) i=1,...,n.

It we take the coordinates of y in the order (Ya'yb'yl""'yn) the

Jacobian is equal to:

S t-l »
abs(det ( s t+l . )) = 28"7L,
. sI ,
Hence we have
kp(s,tlu.a,?ﬁ dsdt is proportional to
1 0 (s{t+c ) ~n)

s" 0 (t(——zi—) L a5 ar, ‘

i=}l o ‘

. s,n-1 5,st-p ds

i.e.proportional to (J) n {t(a( = * ci))} °_dt.,

i=]

whére t is the density tunction corresponding to F.

So kp(s,tlu,o,@) ds dt = kg(p,q10,1,&) dp dq it we put

P-

Qlw

(2.1)

qaﬂst-

71}

or

s = po

- X
t=gq+

We learn trom this that the optimal choice of location and scale
equivariant procedures is not dependent on the true parameter values

B and o. By coding the data in terms ot a contiguration, we have got

November 15, 1983
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rid ot the “"true" parameter values, since any choice we make on the

@-level has to be used tor all possible "true" parameter values.

Figures 2.1 through 2.4 show a series ot contourplots in the
(t,s)-plane ot the densities k(s,tlo,l,?ﬂ tor two contigurations in
twenty dimensions. Fig. 2.1 and 2.2 show the Gaussian and slash (see
3.1) in a Gaussian- drawn, nicely behaved contiguration. Fig. 2.3 and
2.4 do the same with a slash-drawn contiguration. The contiguration
is included in these pictures with "*"'s, the scale on the t-axis 1s,
however, not relevant. We can see how the "outliers" in the second
case intluence the Gaussian density, which is pushed to small s-
values and very stretched in the t-direction. The slash picture does
not exhibit such drastic changes. Ot special interest is the
ditterence between the two densities in any given, tixed
contiguration, because a big such ditterence tells us, that the two
sampling situations "interpret"” the data quite ditterently and lead
us to quite ditterent conclusions. The contigurations used tor these
plots are :

For the Gaussian-drawn &=(-1.4,-1.3,-1.2,-1.1,-1.0,-.91,
-.76,~-.63,-.30,~.14,-.03,.23,.43,.64,.89,1.0,1.5,1.5,1.6,

3.2)

For the slash-drawn &=(-13.8,-6.7,-1.5,~1.1,-1.0,-.90,-.65,
-'51'-0390-309'-001'032'.70'.78'.91,100’1.2'103'208'9.5)o

example:

14

It we want to tind the location estimate T with minimal

&

conditional mean square error, we have to choose T(?) -- i.e. the

U L2
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DAY NG, et e s et EESC I
A A T L AL LA R PRI SN



/’

uo13punby juos umbup-ubieenpg
! ",
7
’
g1 0°1 S0 0°0 . §°0- 0°1- G i- ]
|
o x
T T 1 T T T Mo "
3
.n\
- .O.
{ w
(@] .
-.\
_
» * W W * % * LA SR J * % W W% N - uul L/
wn A
hJ
| Y.
— .
- . >
—
O o
. s 1-1.
-, — Ili
' 4 o e
; ) 2/0 ) X
., . 8fo "
dgq K> %
. /// 4 @ o5
9 o N
] b7
[ 4
. V’
4 ° o
g 1] X
: 3
._ - 5
h o -
“ 02 2z1s jo uoiqpunbijuoo ur Aq1susp *puoo ubissnpq
. S,.ss Aq po3eOTPUT ST uoTjzEaANBTIUOOD Y3} Aw..n.o_u ‘g)y jo 3ord Inojuo) :{°g7 danbig
Y
w\aM\.,-L-.w Lu«h‘\k‘“\.ﬁ\bﬁx .l\%a....dv..d.ﬂ.s.-.i.. ......oﬁ...:..\...,..... . J q..\..vfidJ » .ur\f.,‘.‘.‘n..\..\.,...,-,. \..‘...ML ,4....%% v _,.JMQJ.J% * , wnsa.,,o\nﬁi c\'\ ,,...... NSO t B u.p v !.Huu,. LA



.

o

N

hn )

»

B TARAANST  VAXXMNINS ROV AT Y u N
L/ o

G°1 0°1

uo13abJunb1 juoos umbup-ubiesnog
b
S *0-

S°0 00

0o°1- S°I-

LR B LN 2 B

L K SR R R *R »

S 2-

L
0 e-

S 1-

S°0- O0°1-
s Bojy

00

o .- .
.." \N g.‘ .

e
RER R
RSN

..
SN

0°1

02 @z1s 40 uo1qapunbijuoo ur A31susp *puod ysbis

S,wsw Aq PO3EDOTPUT ST UOTIEINBIJUOD BY3 ;w;.o_m.ut_ 3o 301d xnojuo) :z°z 3anbra

N J ¥ AR LR . RERRAS

TOUDEs TOONY  eoile| IR0, | Inrreeel |

AT S E S R S

v,

L]

N
K

-

3



ey
\J

uo13punb} Juoo umoap-yeo1s
3

- . - s -
NN NN

»
>

S°1 0°1 S0 0°0 S *0- o°1l- S By

o

Pl S di S S S i}

S 2~

1} | i 1 1

et

N
b

Tr v

02~
A Sl

-

a"aleaNat o

- Ty T vy wpwd
\
. 1‘_.0":'

|

RIS UL NP

10 -
S'0- 0°1-
s Bo1

MOV SO D MR A ah S A A fab AN Ak
*
*
*
*
3
.
00

1
S0

0°1

w- w¥n

Aq p@3jeoTpul ST uoTjeRINDIFUOD BYy .Aw.a.c_m.uvx 3o 301d anojuo) :g°z 3anbiy

r,
r
m
‘.
3 ge @z1s 40 uo13punbijuod Ul Aq1SUdp °pPUOD UDISSNDY 5
:
A
:




! ~
: X
m uotaounbi yuoo umpup-yeoie &
v 3
b -
L .-...
4 Sl 0°1 S0 0°0 S *0- 0°1- S°1- "
. | )
: T T q N
__ T T T T "
g
‘ oy
| 4
i (») 'y
1
t ")
s
» * 2. . 0 X3 * * J .1.. .Jﬂ‘
)] By
X
| .
4 = y
(@] —
0
w
l
] 4 o o
- 4]
1 .
]
' O
- [ ]
o
” o
' wn
m
, -
4 -
) e

02 3z1s 40 uo13apunbijuoo utr A31susp °*puoo ysois

S,.vs Aq p@3edoTPUY S} uorjRINBTIUOD BYI ..N.a.o_u.uvx jo 301d anojuo) :y°z Ianbryg

AR AL MRS 20 X



estimated value on the ?—scale -- such that

ave[(('l‘(g) + t)s - u)zlu.cr.c?l =

avel (T(?) + t)252-2(T(2) + t)ysp + wllp,o, )
is minimal. Hence
ave[(T(E)) + t)szlu,cr,?] = ave[sulp,a,?]

or

T (&) = B ave[sin,o,@)-ave(ts®in,o,2)
i ave(s?ln,0,@]
00 00
J I st-es) kp(s,tip,0,d) dsde
- 00
00 00
11)‘ J szkp(s,tlu,c,?) dsdt
-00
00 00
11 P(aP) kp(P,q10,1,&) dpdq
. === (see 1.1)
) p? kg (p,q10,1,@) dpdq
=00

-ave[qulo,l,?]
ave[pzlo,l.?]

- 70,1"?” (2.2)

This invariince result is intuitively obvious: it a code clerk
gives the contiguration ? to the statistician and asks tor a “"goould"
location aestimzte, he has to come up with the same answer no matter
what the true parameter values u and o.

For turther discussion ot this problem see: Pitman(1938),

November 15, 1983
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Fraser(1979), Pregibon and Tukey(198l1), Bell and Morgenthaler(1931).

Since the values ot the parameters p and o do not matter, we

;5 will always calculate our integrals with a standard torm

R u=0, o=1 and otherwise not mention them.

P -

; The observation that the contiguration 2 contains all ot the

;% allowed intormation is tormalized by the statistical notion ot

A ancillarity. The distribution across the 2-dimensional

-

»E contigurations, i.e. the trequencies ot talling into contigurations,
.2 . only depaends on the shape F( ) but not on the actual values ot

e ¥ and o. This is true since the step from the sample ? to the

3 contiguration 4 involves the subtraction of a "location" estimate
1: and division by a "scale" estimate, so that the distribution ot & no
i. longer involves the parameters u and o (and hence is pure shape).

%, This tact is used as an argument to condition on the ancillary

5 statistic @ -- the conditional distribution contains the

"intormation" about location and scale (see: Fisher(1934)).

These are the ideas we want to use, They greatly simplity all
interence problems about u and o. Firstly all our mappings will be
uniquely detined on each contiguration ? by a single real number tee
But secondly the choice ot te is otten possible without reterence to
other contigurations and we hence deal with a "simple" 2-dimensional

problem no matter how big the'sample size,.

2.1. The single situation contidence distribution.

Let us tix a contiguration 3’and a shape F ( ) in standard

torm, i.e. uy = 0. Conditioned on ? we deal with the 2-dimensional

November 15, 1983
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conditional density
n
"1 N t(s(c.+t))

Kols,t1S) = i=1 . 2.3
plStic ©oo . _, N (2.3)

\ Js I t(s(c;+t)) dsdt

b - 00 i=]

where @ = (c,,...,c) and t(x) = ad;l-‘(x).

example: Gaussian case (F = §)

2 n
s" lexp(-%r 3 (ci+t)2) n n-1
<> is] - -2, 2
kQ(s.tlc) = ( 2 (Ci-c) )
1 1 i=1
2w .2

w2
(H) 7 (n=3) (n=5) .. (201(3)")

The normalizing constant in this equation has to be understood as

i
y2

= (n-3)(n-5)...1(-;- it n even.

Now we want to study the ettects ot setting an upper bound tor the
parameter p. It u is the value ot the upper bound statistic U on the
?-scale, i.e. U(?) = y, the statistic is detined on the whole

contiguration by

() = u(s(@+tT)) = s(u+t)
(location and scale equivariance).

We are interested in the coverage probability detined by

Coplu) := PLIU(Y) > 012

November 15, 1983
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It tollows

CoP(u) = PF[s(u+t) > OI?] = PF[t > -ul?]

00 00
Coplu) = g‘rkp(s,tlé)) dsdt. (2.4)
=-u

Cop(u) is the tunction which tor a choice of an upper bound u on the

?-scale gives as its value the conditional probability ot the upper

bound statistic actually being an upper bound tor the parameter u on

the given contiguration.

remark:

Again Cop(u) is not dependent on the values u and o which are used to

calculate the integrals. For a shape F( ) not in standard torm we

would have

= a8
Co F(u) = Pu,c,F[U(Y) > ul pu,a,F[t > < u] =

00 00
g J‘ kF(s,tlp,c,?) dsdt

u_
E u
o0 00
- ,g;ukp(p,qlo,l,é’) dpdq = Cog(u) (see 2.1)

(t = s~ Y > q s U-s u).
From (2.4) we see that

CoF(u) -—> 1 as u -=> oo
CoF(u) -=> 0 as U ~~> =00

November 15, 1983




which is consistent with our intuition., CoF(u) is like a distribution
tunction and can be used to detine contidence intervals tor the

location parameter u.

Whenever we choose L(?) and U(?) such that
CoF(U(?5) - COF(L(?)) = .95 we have a 2-dimensional piece of a 95%
contidence-interval procedure which has exactly 95% coverage
probability conditioned on the contiguration. The upper bound ot the
interval is below p with probability 1 - Co(U(?)) and the lower
bound is above with probability Co(L(?)) and theretore the interval

covers the parameter with conditional probability
1 - =-cot(@) + coL()) = co(@)) - co(L(d))

It we choose to do so tor each contiguration, we will have a 95%
contidence-interval procedure, since we get the “overall" coverage
probability by averaging the conditional coverage probabilities,

which in the above case are constant, across contigurations.

The tunction CoF( ) will be called a coverage distribution or a

contidence distribution. It has the density

d g 9000 2
Co.(u) =: co.{u) = f F'k.(s,t1c¢) dsdt
du™"F F du b F

00
cop(u) = gkp(s,-ulc?) ds. (2.5)

remark:
How does the mean ot the contidence distribution compare with the

minimum-mean-square-error location estimate? The mean m is equal to

November 15, 1983
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00 00

ms= J‘ u\‘kl_.(s,-ul?) ds du =
-o0 b

00 00
-J‘ gt kF(s,tl?) dsdt = -ave(tl?).
-00

whereas the "optimal® location estimate to is

_ ave(ﬁfl?)
ave(szl?)

(see 2.2).

The "optimal" estimate therefore takes the correlation between s and

t into account.

The contidence distribution is not dependent upon the values ot
the parameters p and o used tor the calculation as we have already
seen. Now we want to explore the behavior under changes ot the class
representing element ?ﬁ
Let us tirst look at the case where 3’3 v?, i.e. our representing

element is scaled by vER From (2.3) we have

+0

n
s"71 M ts(d;+n))
i=1

kF(S'tI3) = 00 00 n-ln
g Js nt(s(di+t)) dsdt
-00 1

n
gh-1 n t(s(vc +t))
i=]

oo . ., D
f j s n t(s(vci+t)) dsdt
b'-oo i=]

n
(vs)" 1 11 t(vs(c,+E))
i'l 1 Vv

TT (ve™ ! @ t(vsiesd)) asac
vs VS(C ., += S
b -0 i=] i'v
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n
(vs)™l t(vs(ci%))

N 00 1 l"\.l * kp(vs,-él?)
J a1 t(a(c;+b)) dadb
=00 i=!

We used the change ot variables:
a = vs -=-> da = vds and b = % -=-> db = Qvi -=->dadb = dsdt

The contidence density on the P-scale is theretore

00 00
cop(uld) = gkp(s.-m?) ds = Tkplvs,- $12) ds

o0
u da 1 u
= gkp(a,- ‘6'?) .V- = v COF(-V'l?)o

We see that the multiplier v behaves like a scale parameter!
Now let us consider the case where 3 = 3+wf, i.e. our representing
element is translated in the (1,1,...,1) - direction by w € R. From

(2.3) we have

n
s""1 I t(s(a,+t))
kp(s,t1d) = 1=1

o0 ., n
f Js n t(s(diﬂ:)) dsdt
b -0 is]

n
g1 Il t(s(c +w+t))

. is1

TT ™ qees )) dsdt
S S(Cc.+we+t - .9
b-{ao jm1 i

1}
s"l E(S(c +wet))

i=]} -
f s n t(s(c;+b)) dsdt
b -%0 isl
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We used the change ot variable: b = t+w --> db = dt.

The contidence density on the 3¥scale is theretore

0o 0o
cog(uld) = 1gkp(s.-uld)ds - gkp(s,-(uw)u&‘)ds = cop(uewld).

We see that a “translator” w behaves like a location parameter. The
behavior under changes or transtormations ot the class-representing

elements is again tollowing our intuition:

coF(ulv?) = % cop(gl?)

N
Lo
ﬁfg (2.6)
AN coF(ul?+wf) = coF(u+w|?).
example: Gaussian case (F = §)
Using our expression tor kQ(s,tl?) in tormula (2.3) we get
2 n
sn'lexp(-é- 3 (c.-u)z) n-1
% 2. ! 2 =2, 2
coglu) = \J (2 (c;-c)%) ds
b 1 1 i=l
2w .2 w 2
(1;) (n-3)(n-5)..(20r(5) )
n-1
1 n
= =22
w, 2 (2 (c.=-¢)7%)
. (n-2) (n~4) ..(Zor(i) ) j=1 !
1 1 n
= n
(21)2(n—3)(n-5) ..(Zor(!)i) (2 (c.-u)z)-5
n 2 j=1 1
1 u-¢
= T tn_l(jir) (2.7)
c c
2 1 < =2
where s_ = 3 (c;-¢)” and ¢ _, () is the tamiliar t-density

¢ ninlhyg,

with (n-l) degrees ot treedom in its standard torm. We see that the

contidence density in this case has a tixed shape across
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contigurations so that we could have chosen our class-representing

elemants in such a way that s_ = 1 and C = 0 in which case the
c

contidence density would always be t_ _, () in standard torm.

Figures 2.5 and 2.6 show the tunctions co( ) (see 2.5) tor the
two contigurations we used already in Fig. 2.1 through 2.4. The red
tunction shows the slash coverage density and the black one the
Gaussian coverage density, i.e. a Student's-t density with 19 degrees
ot treedom. These densities are calculated by using a linear logistic
tit to Co( ). It is clear how outliers in a contiguration greatly
intluence the Gaussian coverage density. In the tirst -- Gaussian
drawn case -- the ditterences are not big, the slash density is moved
a bit to the lett, which is reasonable it we look back at the

contiguration.

Once we know the conditional contidence distributions tor a
given sampling situation F, we can tind a contidence interval
estimator tor any pretixed contidence coetticient 100(1-d)% in the

tollowing way.

In each contiguration 2 we tix the upper and lower bounds
such that the conditional coverage probability is equal to
100(1-q)% . This implies that the overall contidence level will
indeed be 100(l1-q)%. We do, however._still have some treedom in the
choice ot the upper and lower bounds. The most natural choice treats

the lett and right tail ot the conditional contidence distribution in

3 balanced way, i.e. we leave out 100 %% trom each tail. This now

g

oY
o
“
-~
-
»
“

uniquely -- except possibly in pathological cases -- determines a

Y N

contidence interval estimate.
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Gaussian

slash

of size 20
i
0
slash-drawn

coverage densities for configuration

6: Conditional coverage densities; same configuration as in Fig. 1.3 and 1.4

Figure 2.
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Treating the two tails in a balanced way means that we care just
as much about missing the true location because the lower bound is
too high‘as missing because the upper bound is too low. Once we have
tixed our idea about the allowed conditional missing probability, the

balanced division seems the natural thing to do.

example: Gaussian case (F = § )

The coverage density in this case is always a t -density

n-1

with location © and scale S_. The above procedure is therefore
c

the usual symmetric t-interval.

3. Strong contidence intervals tor 2 location parameter: A

compromise between the Gaussian and the slash.

In this section we want to study the etfects of not knowing the
shape F ot the underlying sampling situation. 1In order to do this
we will look at the simplest possible case where we restrict
attention to two possible candidates, the Gaussian and the slash.
The latter is the distribution ot the ratio ot a standard Gaussian
and a unit unitorm which are independent. The density tor the slash

is

2
t(xip,o) = 2 [1~exp(-i5:%%-)1 .
3 20

(20) ¢ (x-p) 2

From the verbal description we recognize the slash as a "continuous"”

mixture ot Gaussians with scales which are like an inverse unitorm.
The density shows us the tail behavior as Jf and is theretore like
X

a t-density with one degree ot treedom ( see Rogers and Tukey (1972))
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tor turther insights).

Nonparametric interval procedures -- like the sign interval, the
Wilcoxon signed rank interval and so on -- are an attractive choice
of compromise for many statisticians. These intervals are guaranteed
to reach the desired contidence tor all symmetric situations and
hence seem to solve the problem ot compromising between situations
once and tor all. But we would expect that seeking to put such a
vast class ot situations under one hat has its disadvantages.
Furthermore it is not at all clear how these procedures behave
conditionally (on contigurations). All nonparametric tests -- from
which th2 corresponding intervals are derived -- need an argument ot
equal probability under permutations. They condition on the class ot
samples which one gets from the one at hand under permuting around
the hypothesized parameter value. A bit ot thought shows us that this
is an operation which does not preserve the contiguration. It should
theretore be revealing to learn more about the properties ot

nonparametric intervals conditioned on a given contiguration.

It has been pointed out in the "robustness literature” that the
stability ot the contidence level ot nonparametric procedures is only
one aspect which the statistician tries to keep under control -- this
property has been named "robustness ot validity". Another aspect ot

interest is the etticiency -- which can be expressed in various ways

-- ot a statistical procedure.

N

x

7

A&

3.1. Strong contidence intervals

-
L]

Even it robustness ot validity is our goal, we need not stop at

A
LA

a
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nonparametric intervals.

We might reasonably ask tor a contidence interval which has a
“robust® contidence coetticient (or coverage probability)
conditioned on contigurations. In our "two-situation world" this

would mean that the intervals have to be big enough to reach

100(1-q)% coverage probability conditioned on each contiguration

tor the slash and tor the Gaussian. Of course there will

usually not be such an interval and we have to settle for at
- least 100(l1-d)% coverage probability conditioned on each

contiguration tor the slash and the Gaussian.

We already know that over the sample space the slash coverage of
Student's t interval is conservative. The above approach might then
not be very tar trom the classical t-interval. We can also say that
;he solution to this problem will end up enlarging the t-intervals in
certain contigurations.

It we view robustness as a problem in stability ot coverage
probabilities, i.e. a problem in how sate is the use of a contidence
interval, we are lead to search tor rather long intervals and our
tlexibility in choosing upper and lower bounds is quite restricted as

Figure 3.1 tries to show.
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Figure 3.1: Solutionspace [L(?).U(?)] conditioned on contiguration
C'(Cl,...,cn)

half-width on the ?-uale
a

vhich will reach at least the
required conditional covergge
probability in both situatidys.

The shaded region contains
the confidence intervals \%

Gaussian

<
- -» center on the c-scale

In order to study these strong interval procedures we adopt the

tollowing strategy. Our starting point tor each contiguration
consists ot the two intervals which have 100(l-q)% coverage
probability and are treating the upper and lower tail ot the coverage

density symmetrically. Figure 3.2 shows the conditional situation.
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@:J Fxgure 3.2: Conditional coverage densities tor the slash and Gaussian
( situations and the two symmetric intervals

slash

Gaussian

inference on the
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c-scale
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Lo In order to tind a "strong” interval, i.e. one which has at
least 100(1-d)% conditional coverage probability in both situations
we will look at the interval which we get by selecting the maximum ot

A the two upper bounds and the minimum ot the two lower bounds.

L= min(Lg,Ls)

bexs U s= u 3.1
g1 max ( g'Us) (3.1)

ot (see Figure 3.2)
- Clearly this will be a strong interval which can be tound relatively
oy easily. There are tour possible cases into which contigurations can

tall:
N
AN =

(a) (L,U] = [Lg,Ug]
i (b) (L,U) = [Lg.Ug)
(c) (L,U] = [Lg.Ug)

P ¥
+ RN e

[
2
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(Q) (LU} = (Lg,u,] (3.2)

The cases (a) and (b) are such that one ot the two situations
dominates the other, and the choice ot [L,U] is more or less the best
thing one can do. In the mixed cases (c) and (d) however the interval
[L,U] could be shortened turther and still be kept strong. The
possible gains trom such a shortening however are small compared to

the ditticulty in tinding them.

We will theretore examine the intervals given by (3.1) tor thne
case ot 95% coverage probability. Table 3.1 shows the percentage ot
observed cases (a), (b) and (c)&(d) in the ditterent sample sizes.
Table 3.1: Percentage ot observed cases (a), (b) and (c)&(d) (tor de-

Tinition see (3.2))

Gaussian situation slash situation

1]
I
sample size (a) (b) (e)&(d) Il (a) (b) (c)&(d)
I
T
20 : 18% 12% 70% “ 80% 0% 20%
H 2 2 2 .rlr 1 2
10 : 32 33 16 5% 50 $% t 78% 1 3% 20 3%
! 1 1 3 i 4 1
5 | 89 AR L 780 |loa g 1% 4 2

(In samples ot sizes 10 and 20 the numbers are based on 150 slash-
drawn and 150 Gaussian-drawn contigurations, in samples ot size 5 the

cofresponding numbers are 500 and 500!)

The message trom this table is striking. The Gaussian situation

is dominating in samples ot size 5, where we are most ot the time in

8 case as shown in Figure 3.2 and where Student's t interval is close
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to the “"best"™ (in terms ot expected length) strong interval

2,

e 7, .'_' '.'l_ [ ﬁ
K '. . '.' o . .

—
-~

.:"3 g

procedure. In samples ot size 5 then, we do not expect that

.
L
1

E:? compromising between Gaussian and heavy-tailed slash is very
. .
3$j ditticult. The slash intervals are overly optimistic and too short it

judged trom the Gaussian point ot view. The Gaussian intervals, i.e.
Student's t intervals, on the other hand seem to do a good job ot

keeping the conditional coverage probability above 95% even in the

P

" ARG
A

slash situation. And this is true whether the samples are drawn from

(s

.
o

W al

RNt

a Gaussian or trom a heaavy-tailed shape. One might conclude that

=
i:i maybe more serious challenges to the Gaussian model tor location
Fos contidence intervals have to come trom less heavy-tailed shapes than
AU

NS ]

A |

-

o Samples of size 10 and 20 behave roughly similarly, but very
L

jtﬁ ditterently trom samples ot size S. In slash drawn samples the

?\J:

i:} Gaussian situation mostly dominates, but not as overwhelmingly as in
S

3y samples of size 5. In Gaussian drawn contigurations the mixed cases
‘TN are a majority, introducing the slash along with the Gaussian and

a:j
‘G

'514 thus really contributes a naw point ot view. 1In a lot ot

i

v contigurations it torces us to acknowledge the tact that Student's t
N interval doesn't stretch tar enough to the right or to the lett and
NN

~?§ has to be enlarged. A more detailed account ot the behavior ot the
s *strong® intervals trom a contigural point ot view gives the
'fg i tollowing results.

o
.?ﬁ For samples ot size 20, Figure 3.3 shows the conditional

L-h'
. coverage probabilities tor the Gaussian and slash situation. Figure
?:; 3.4 is the corresponding picture tor sample size 10. We see how the
X))
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’:f. Figure 3.3: Stem-and-leaf plots of the cond. confidence levels of
:ﬁ‘-"‘ the strong interval (3.1) for 150 sampled configurations of size 20
L N = 150 Medisn = 0.96295 Minges = 0.955, 0.9476
s Decimal point 1s 3 place(s) to the left of ths colon
Z:Q:Z;i 26 24 952 : 667T77788888388999999999
e 3s 11 953 2 0000111227

: 37 2 954 2 44
A 60 3 955 : 04s
o 48 8 956 3 22334578
W 49 1 957 : &8
> 52 3 958 3 TI7

s 56 4 959 : S889
L 64 8 960 : 23455689
et 69 S 961 : 11279
S‘:;::: 75 6 962 : 124699
gL TS 12 963 2 025666788899

o 63 11 964 2 00234447899
- 52 6 965 : 113469
46 6 966 : 005579
N 40 9 967 : 056669999
59 kD | S 968 ¢ 23578
b3t 26 4 969 : 1358
9N 22 & 970 : 0067
R 18 6 971 3 244799
A 12 6 972 2 002366

Ny 6 1 9713 ¢ 7

}:: s 2 974 3 29

V] 3 2 9715 : 07
‘6 1 0 976

1 0 277

“ ag 1 1 918 : 8

d

t

e Gaussian situation
e
b

‘_ N = 150 Redian = 0.9983 Hinges = 0.9809, 1

o

j:_-;j Decimal point is 2 place(s) to the left of the colon
'..u.’

! 1 1 95 : 1
2 1 9 : 7

a 3 1 9% 2 2

\@ ’ 6 96 : 667788
Rts 20 11 97 3 11233444444

T 37 17 97 ¢ 55555555555567789

4 43 é 98 2 122444
T 48 S 98 : 55999
G $7 L 99 2 0022244404
\ -\f 27 99 3 555556866667770888889999999

'% _ 66 66 100 00000000000000000000000000000000000000000000000000&
’-‘*-‘ slash situation
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L“,: Figure 3.4: Stem-and-leaf plots of the cond. confidence levels of
S the strong interval (3.1) for 150 sampled configurations of size 10
. . N = 150 Nedian = 0.9559 Hinges = 0.95, 0.962
!‘..ﬂ
-5 Decinal point is 3 place(s) to the left of the colon
[
b $2 $2 950 ¢ 0000000000000000000000000000000000000000000000000124
$6 4 951 : 6688
~ 62 6 952 : 135678
N 67 5 953 2 11246
TN 73 é 954 : 3448289
T 5 2 955 : 08
5D 15 9 956 ¢ 012237889
66 7 957 : 0334588
X 59 S 958 : 02569
203 L 1) 6 959 2 4557
;:. S0 T 960 2 0133469
12 43 5 961 : 02568
o 3s 9 962 : 013367789
x;e, 29 9 963 : 013555689
o 20 3 964 : 3579
5;2 17 2 965 : 29
{3 15 4 966 3 0267
o 11 2 987 : 1S
&N 9 1 968 : 2
. s 0 969 :
e 8 1 970 :8
NG 7 2 971 : 23
I s 0 972 :
Y H 4 973 : 0155
i 1 1 9% : 9
"f Gaussian situation
o
¢
o
e:'} N = 150 Medisn = 0,993 Hinges = 0.9737, 0.9999
Y Decimal point is 2 placeCs) to the left of the colon
¢ & 95 3 0023
o ] ¢ 95 3 6899
O 16 s 96 : 00012234
e 31 18 96 3 S55677888888899
53y 4 13 97 2 0001126444446
o4 S 10 97 3 5556779999
1. 58 4 98 : 0034
e 70 12 98 : 555566799999
NN 10 99 2 0012333344
N 70 24 99 2 S5566777T770080888880889999
;2 46 46 100 ¢ 0000000000000000000000000000000000000000000000
,, slash situation
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gﬁ} smaller sample size moves us nearer to Student's t interval, which
ke would have exactly constant 95% conditional coverage probability in
e the Gaussian situation. In the slash situation this shows in a trend
I" ¢‘

;{Q to be increasingly "overlong®™ in samples ot size- 20.

L}
4
A

The tollowing table gives the expected length ot these

2
’
4

intervals,

»* ‘.‘
fls"

Q Table 3.2: Expected length ot "strong" intervals
7/

Gaussian situation slash situation

I l
| |
1 1

size=5 | 2.335 (.0003) : 103.0 (75.6)
|

size=10 | 1.458 (.0058) I 22.12 (7.54)
! |

size=20 | 1.021 (.0053) | 63.93 (52.2)

In comparison to Table 3.1 we can again see what we noticed by
looking at conditional coverage probabilities. As the sample size
increases one has to enlarge Student's t interval in order to have at

least 95% slash conditional coverage.

The next three pictures, Figures 3.5, 3.6 and 3.7, show us
something about the conditional unbalance or asymmetry ot the strong
intervals., Hare we plot the conditional probability ot missing the

true parametervalue at the low (i.e. lett) end vs. at the high end.

Two things are quite noticable. In all three cases most ot the

strong intervals are slightly asymmetric. There is a branch trom

(0.0, 0.0) to (0.025, 0.025) above and below the diagonal --

‘§ which contains the balanced intervals. The correction trom
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Student's t to the strong interval is theretore usually one
sided. Furthermore we notice how the increase ot sample size
intluences the picture. More and more points get absorbed into
(0.0, 0.0) -- which means they are overlong -- and the two

branches we discussed are pushed toward the edges.

The above discussion has an interesting consequence: maybe it makes
more sense to compromise with a less extremely heavy-tailed
counterpart than the slash in samples ot size 5. This tinding
disagrees with the tact that with bigger sample sizes the distinction
between samples drawn ftrom the slash and samples drawn from the
Gaussian becomes more "obvious"™ -- and that compromising these two
situations is theretftore simpler in larger samples (see: Bell &
Morgenthaler(1981)). To try this idea the "slacu"-distribution was
used together with the Gaussian. This is the distribution ot the
ratio of a standard Gaussian and the cube root of a unit unitorm --

it's density has tails like J?. But still Student's t interval comes
X

out to be very close to the strong interval -- now strong tor

Gaussian and slacu! Table 3.3 shows the numbers.

Table 3.3: Percentage ot observed cases (a), (b) and (c)&(d) (tor de-

finition see (3.2) note, however, that the slash is replac:J by the

slacu)

Gaussian situation slash situation

|
|
: (a) (b) (c)&(d)

|
|
sample size | (a) (b) (c)&(ad)
|
T T
5 | 78 gs %s 20 %% Il 91 %% 1 115% 7 %s

Surprisingly little changed by replacing the slash with the slacu. It
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%{ we want to get robustness in the sense of stable conditional coverage
‘-'-A

probability under heavy-tailed challenges, Student's t interval

—

- behaves well in samples of size 5 and leaves little scope tor
5: moditications.
SAY
‘s
] 3.2. Conditional behavior of nonparametric contidence intervals
=
5
I
23 As we pointed out in the introduction to this chapter,
kY
o nonparamatric contidence intervals, which are assured to have a tixed
)]
N contidence level "over the sample space"” tor all symmetric
ar: situations, need not have a tixed coverage probability conditioned on
. the contiguration. In this section we will see in a descriptive
o',
;R tashion how the intervals derived ftrom Wilcoxon's signed rank
v statistic and trom the sign test statistic behave conditioned on
{
o~ contigurations.
a:‘
"~
'}: We are interested -- as always -- in 95% contidence intervals
and ot course neither of the above procedures will be able to create
A
ﬁ a 95% contidence interval tor samples ot size S, where the interval
Ed detined by the minimum and maximum of the sample has 1 - f% = ,9375
iy coverage probability. In order to compare over the tull range ot
\
o sample sizes, we will include the "range"” - interval for sample size
-
ﬁﬂ S. For samples ot size 10 and 20 we use logistic interpolation in the
Ny
f‘ Wilcoxon and binomial tables to get approximately a 95% contidence
X
;:{ interval. On the contiguration scale, i.e. expressed as intervals tor
2,
o €)£c,€...£C,, we use the tollowing intervals:
-
o
‘l
)
fod
v
S
i@ November 15, 1983
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sign interval

..............

Wilcoxon-interval

|
[
-1
size=5S : [cl,csl [cl,csl
size=10 : [.5¢c,+.5¢5,.5¢cg+.5¢y]) [.26wg+.74wg, . 74w o+ 26W,q]
size=20 | [.82c6+.18c7,.82c15+.18c14] [.34ws4+.66w53,.34w157+.66w158]
1 i it ¥y b
(wls"‘swn(n+1) denote the Walsh averages, i.e. 3 ordered y

value.)

It turns out that the sign interval and the Wilcoxon interval

have quite ditterent behaviors as one looks across situations and

sample sizes. The tollowing table contains the estimated variation ot

the conditional coverage probabilities.

Table 3.4: Hinge-spreads (see Tukey(1977)) ftor

probability in %

conditional coverage

Gaussian : slash

size=20 3.50% | 3.73%

sign intervals size=10 3.668, | 2.58%,
size=5 2.44% : 5.35%

T

size=20 1.25% | 3.32%

Wilcoxon intervals size=10 1.30%, | 4.00%,
size=S 2.44% | 5.35%

(*: Entries for sample size 5 are tor the "range"-interval)

The sign interval procedure is getting worse in the slash

situation trom samples ot size 10 to 20 as tar as stability ot the

conditional coverage level is concerned. The Wilcoxon interval seems

to improve. On th2 whole it is surprising how

little the increase in

sample size stabilizes the conditional coverage levels.

November 15, 1983
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Both interval procedures are bad tor very small samples in the
heavy-tailed slash situation. Looking across situations, the two
contidence intervals are complementary as well. The sign interval is
more stable in the slash tor the intermediate sample size ~- whereas
the Wilcoxon interval is better in the Gaussian. It we adopt a
measure of variation which uses more ot the intormation in the tails
ot the distribution ~- like the standafd deviation -- the ettects
come out even more clearly. They can also be seen in Figures 3.8 and
3.9, which show box plots (see: Tukey(1977)) of the conditional
coverage probabilities.

In these Figures we use the logistic transtorms ot the conditional

coverage probabilities p, detined by

logit(p) = log(pBpio2gs) (3.3)

so that, on the transtormed scale, a value of zero corresponds to
exactly 95% conditional coverage, whereas positive values indicate
conditional coverage bigger than 95% and negative values indicate
coverage smaller than 95%. We hope that the distributions will be

made more symmetric by this re-expreSsion.

In these pictures we can also see how the numbers ot Table 3.4
came about. The Wilcoxon interval in samples ot size 10 produces
quite low conditional slash coverage probabilities in some "extreme"
contigurations. This is clear trom the tact, that intormation from
the smallest and largest observation are sometimes used, since they

th Gth

and 4 Walsh average, The median ot

can contribute up to the 10
the conditional coverage probabilities can be quite substantially

bigger than 95% (the mean over contigurations). This retlects the
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Figure 3.8: - 40 -

Logistic transforms for 150 sampled configurations of the sian interval

cond. coverage for sign 1n samples of size 10 & 20
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tact that the distribution ot the conditional coverage probabilities

is skewed towards low values.

Asymptotically, these ditterences between contigurations we have
observed here, disappear. It we repeatedly take large samples trom a
tixed shape F( ), the contigurations we tall into will usually be
relatively similar and the conditional coverage probability tor this
situation F( ) will theretore be nearly constant. All the comments we
have made are hence about phenomena observed trequently only in small

samples.

Figures 3.10 through 3.13 show the conditional probability ot
missing the true location parameter at the lower and upper tail tor
the two nonparametric intervals and the two situations in samples ot
size 10. It becomes clear now that the two situations are indeed
quite ditterent. Both procedures create rather unbalanced intervals
in the slash situation -- the Wilcoxon more so than the sign. Many of
the Wilcoxon intervals are too long in one direction and oftten too
short in the other. The lines drawn in the pictures correspond to
intervals with exact 95% conditional coverage probability. Most ot
the intervals are below this line -- and are theretore overlong. The
tewer points above the line still bring the overall coverage to the
nominal 95%. In Gaussian samples the Wilcoxon clearly does quite a
good job and is substantially better than the sign intervals, which
show a similar behavior as in the slash situation. These plots look
similar in samples of size 20. In that case they are, however, a bit

more concentrated tor both situations.

We can summarize what we have learned up to now by saying that,

November 15, 1983
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even though both the sign and the Wilcoxon intervals reach a tixed

contidence level across the whole sample space in all symmetric
situations, there are ditterences as soon as we look at the
conditional contidence levels. The sign intervals are more stable
than the Wilcoxon intervals it we sample trom the heavy-tailed slash.
The opposite is true it_we believe strictly in the Gaussian model. As
a compromise between these two extremes, we would probably choose the

Wilcoxon.

The second important thing about contidence intervals besides
coverage probability is the length distribution. Table 3.5 gives the

estimated mean lengths and coetticients of variation.

Table 3.5: Estimated mean length and estimated coefticient ot varia-
_--

tion

Gaussian situation slash situation

| I

| I
. size=20 | 1.16 26.5% Il 2.65 23.3%
sign intervals sizes10 | 1.64 29.08 || 5.39 75.2%

[ 1

| i
. size=20 | .955 17.5% 3.34 57.1%
Wilcoxon intervals i ..10 | 1.46 25.0% || 24.51 476%

It is quite obvious that the Wilcoxon intervals are extremely long in
extreme contigurations ot size 10. Otherwise this table contirms our
view that the sign intervals are to be tavored in the slash and the
Wilcoxon in the Gaussian. This tact also appears in an asymptotic
theory via Pitman etticiencies. The square root ot these etticiencies
applies to asymptotic ratios ot mean lengths. The values tor the

Gaussian and slash are summarized in Table 3.6.
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Table 3.6: Square roots ot ratios ot Pitman efticiencies

Gaussian || slash

methods |

|

T
sign vs. Wilcoxon I .8165
sign vs. Student's t I .7975
Wilcoxon vs. Student's t | .9772

We can check how well these asymptotic numbers work by comparing them

to the small sample estimated ratios, as we do in Table 3.7.

1]
11 1.082
Il oo
Il oo

Table 3.7: Estimated ratios of mean length

|| Gaussian | slash
I |
size=10 || .8901 | 4.55
sign vs, Wilcoxon size=20 || .8233 | 1.2604
asympt |l .8165 | 1.082
1 T .
size=10 Il .8514 | 13.47,
sign vs. Student's t size=20 Il .7966 | 53.71
asympt 1l .7975 | 0o
T T .
size=s10 Il ,9s66 | 15.14,
Wilcoxon vs. Student's t size=20 !l ,9675 | 65.24
asympt I .9772 | 00

*: theoretical value is oo

A comparison between the two sets ot numbers shows that the
asymptotic expression is a good approximation as tar as samples ot

size 20 are concerned, but tor sample size 10 the agreement is not

good except in "Wilcoxon vs. Student’s t".

Both nonparametric intervals we have considered up to now do not

leave us entirely happy and a procedure between these two extremes

A5 LS EERAS T
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might well be a better compromise. There are at least two ways in
which one can bridge the sign and Wilcoxon. One was suggested by J.
W. Tukey and it works by trimming observations trom the ordered
sample and computing Wilcoxon's signed rank statistic on what is lett
over, thus omitting certain i and j entirely. The other (Policello
and Hettmansperger(1976)) works by "winsorizing® the scores in
Wilcoxon's signed-rank statistic. This is equivalent to omitting
Walsh averages with |i-ji>bound. (It, tor example, we put the
extreme bound ot 1 on the ranks, the sign statistic, i.e. the number

ot positive observations, comes out.)

Both ot these procedures can be explained in terms ot the

triangle ot Walsh averages.

(1) trimmed Wilcoxon (2) winsorized scores
Both only take the Walsh averages in the corresponding shaded region
into account. These methods are expected to do a bit worse in the

Gaussian than the Wilcoxon but to improve in the slash.

It turns out that in samples ot size 10 the procedure which
trims the largest and smallest observation very nearly gives the same
contidence intervals as the procedure which puts a bound ot 3 on the
ranks. Both are worse in the Gaussian situation than the Wilcoxon,

which is no surprise -- but they seem to be rather close to the sign

November 15, 1983
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intervals and even a bit worse in terms ot stability ot the
conditional coverage probabilities. In the slash situation, they are
quite close to the sign intervals. In terms ot expected length these
“robust® intervals are an improvement (see Morgenthaler (1983)).

In samples ot size 20 the two proposed moditications ot the Wilcoxon
test statistic produce nearly identical results. Now these

"robustitied” rank intervals really make an improvement. In the

Gaussian situation they are between the Wilcoxon and the sign, in the
slash situation they improve over both ot them. Instead ot having a
hinge-spread of contidence levels across contigurations ot roughly 3%
{see Table 3.4), these procedures go down to about 2.5%. Figure 3.14
shows a boxplot similar to the Figures 3.8 and 3.9.

We would theretore recommend the use ot these contidence intervals
which bridge the gap between the sign and the Wilcoxon procedures tor
larger sample sizes because in a heavy-tailed case they show an

improved behavior.

4. Conclusions.

Strong contidence intervals are appealing trom the point ot view
ot validity ot an interval estimator. Their conditional contidence
coatticients given any contiguration is kept above the nominal level
tor both situations. We only took two situations into consideration,
but this is already a conclusive case. It we sateguard against heavy
tailedness in the way described in this report, we do not have a
ditticult job. Student's t interval is already resistant as tar as
validity is concerned. But ot course many statisticians will

criticize Student’'s t interval as being too long in contigurations
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with outliers. The research described shows us the need tor
compromising between validity and some measure ot etficiency. 1If we
only consider validity, we automatically sacritice etticiency in a
rather extreme way. We considered three sample sizes (u =5, 10 and
20) and it is rather striking how the problem ot compromising between
shapes changes with changing sample size. For samples ot size 5 it
turns out that Student's t intervals are nearly "optimal". As the
sample size increases this no longer holds. 1In order to be strong,
Student's t interval needs to be enlarged (usually in only one

direction).

In the last section ot this report we examine non-parametric
contidence intervals. It becomes clear that a stable overall
contidence coetticient does not ensure a good behavior ot the

conditional contidence coetticients.
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